论文代写-英语日语韩语德语俄语法语
论文翻译-英语日语韩语德语俄语法语
论文修改-英语日语韩语德语俄语法语
代写作业代考试题考卷-英语日语韩语德语俄语法语
作文报告申请书文章等代写-英语日语韩语德语俄语法语
研究计划书代写-英语日语韩语德语俄语法语
西班牙语意大利语论文代写翻译修改
论文发表-英语日语韩语德语俄语法语
英语 English
日语 日本語
韩语한국의
法语 Français
德语 Deutsch
俄语 Pусский
西语 Español
意语 Italiano
·英语论文 ·日语论文
·韩语论文 ·德语论文
·法语论文 ·俄语论文

名称:智尚工作室
电话:0760-86388801
传真:0760-85885119
手机(微信):13380876598
地址:广东中山市学院路1号
网址:www.zsfy.org
E-Mail:cjpd
@vip.163.com
商务QQ:875870576
微信二维码

业务联系
隐藏文章
Mathematics for Computer Graphics
添加时间: 2012-12-19 12:14:23 来源: 作者: 点击数:3683

Mathematics for Computer Graphics
Greg Turk, August 1997
"What math should I learn in order to study computer graphics?" This is perhaps the most common general question that students ask me about computer graphics. The answer depends on how deeply you wish to go into the field. If you wish to begin to use off-the-shelf graphics programs then the answer is that you probably do not need to know very much math at all. If you wish to take an introductory course in computer graphics, then you should read the first two sections below for my recommendations (algebra, trigonometry and linear algebra). If you want some day to be a researcher in graphics then I believe that you should consider your mathematics education to be an ongoing process throughout your career.

If you do not particularly care for mathematics, is there still a chance of working in the field? Yes, a few areas within computer graphics are not much concerned with mathematical ideas. You should not give up on graphics just because you are not a math wizard. It is likely, however, that you will have more freedom in choosing research topics if you have a willingness to learn about new mathematical ideas.

There is no absolute answer to what mathematics is important in computer graphics. Different areas within the field require different mathematical techniques, and your own interests will likely lead you towards some topics and may never touch others. Below are descriptions of a number of areas in mathematics that I believe are useful in computer graphics. Do not feel that you need to be an expert in each of these areas to become a graphics researcher! I deliberately included many areas below to give a fairly broad view of the mathematical ideas used in graphics. Many researchers, however, will never find the need to look at some of the topics that I mention below.

Finally, although it should be clear from reading this, the opinions given within this document are entirely my own. It is likely that you would get a different list of topics or at least different emphases from other people who work in computer graphics. Now on to the list of topics.


Algebra and Trigonometry
High-school level algebra and trigonometry are probably the most important areas to know in order to begin to learn about computer graphics. Just about every day I need to determine one or more unknowns from a simple set of equations. Almost as often I need to perform simple trigonometry such as finding the length of the edge of some geometric figure based on other lengths and angles. Algebra and trigonometry are the subjects that will solve such day-to-day tasks in computer graphics.
What about the geometry that we learn in high school? It may come as a surprise, but our high school geometry is not very often needed for most tasks in computer graphics. The reason for this is that geometry as it is taught in many schools actually is a course in how to construct mathematical proofs. While proof construction is definitely a valuable intellectual tool, the actual theorems and proofs from your geometry class are not often used in computer graphics. If you go to graduate school in a mathematics related field (including computer graphics) then you may well find yourself proving theorems, but this is not necessary in order to start out in graphics.

If you have a good understanding of algebra and trigonometry then you are quite prepared to begin reading an introductory book in computer graphics. Most such books contain at least an abbreviated introduction to the next important area of mathematics for computer graphics, namely linear algebra.

Book recommendation:

Computer Graphics: Principles and Practice
James Foley, Andries van Dam, Steven Feiner, John Hughes
Addison-Wesley
[a huge book, but still my favorite]
Linear Algebra
The ideas of linear algebra are used throughout computer graphics. In fact, any area that concerns itself with numerical representations of geometry often will collect together numbers such as x,y,z positions into mathematical objects called vectors. Vectors and a related mathematical object called a matrix are used all the time in graphics. The language of vectors and matrices is an elegant way to describe (among other things) the way in which an object may be rotated, shifted (translated), or made larger or smaller (scaled). Linear algebra is usually offered either in an advanced high school class or in college. Anyone who wishes to work in computer graphics should eventually get a solid grounding in this subject. As I mentioned before, however, many textbooks in graphics give a reasonable introduction to this topic-- often enough to get you through a first course in graphics.
Book recommendation:


Linear Algebra and Its Applications
Gilbert Strang
Academic Press
Calculus
Knowledge of calculus is an important part of advanced computer graphics. If you plan to do research in graphics, I strongly recommend getting a basic grounding in calculus. This is true not just because it is a collection of tools that are often used in the field, but also because many researchers describe their problems and solutions in the language of calculus. In addition, a number of important mathematical areas require calculus as a prerequisite. This is the one area in mathematics in addition to basic algebra that can open the most doors for you in computer graphics in terms of your future mathematical understanding.
Calculus is the last of the topics that I will mention that is often introduced in high school. The topics to follow are almost always found in college courses.


Differential Geometry
This area of mathematics studies equations that govern the geometry of smooth curves and surfaces. If you are trying to figure out what direction is perpendicular to (points directly away from) a smooth surface (the "normal vector") then you are using differential geometry. Making a vehicle travel at a particular speed along a curved path is also differential geometry. There is a common technique in graphics for making a smooth surface appear rough known as "bump mapping", and this method draws on differential geometry. If you plan to do work with curves and surfaces for shape creation (called "modeling" in the graphics field) then you should learn at least the basics of differential geometry. Multivariable calculus is the prerequisite for this area.
Book recommendation:


Elementary Differential Geometry
Barrett O'Neill
Academic Press
Numerical Methods
Almost every time we represent and manipulate numbers in the computer we use approximate instead of exact values, and because of this there is always the possibility for errors to creep in. Moreover, there are often many different approaches to solving a given numerical problem, and some methods will be faster, more accurate or require less memory than others. The study of these issues goes by a number of names including "numerical methods" and "scientific computing". This is a very broad area, and several of the other areas of mathematics that I will mention can be considered sub-areas underneath this umbrella. These sub-areas include sampling theory, matrix equations, numerical solution of differential equations, and optimization.
Book recommendation:


Numerical Recipes in C: The Art of Scientific Computing
William Press, Saul Teukolsky, William Vetterling and Brian Flannery
Cambridge University Press
[this is a very valuable reference but is not normally used as a textbook]
Sampling Theory and Signal Processing
Over and over in computer graphics we represent some object such as an image or a surface as a collection of numbers that are stored in a regular two-dimensional array. Whenever we do this we are creating a "sampled" representation of the object. A good understanding of sampling theory is important if we are to use and to control the quality of such representations. A common issue in sampling as it applies to graphics is the jagged edges that can appear on the silhouette of an object when it is drawn on a computer screen. The appearance of such jagged edges (one form of a phenomenon known as "aliasing") is very distracting, and this can be minimized by using well-understood techniques from sampling theory. At the heart of sampling theory are concepts such as convolution, the Fourier transform, and spatial and frequency representations of functions. These ideas are also important in the fields of image and audio processing.
Book recommendation:


The Fourier Transform and Its Applications
Ronald N. Bracewell
McGraw Hill
Matrix Equations
There are a wide variety of problems that come up in computer graphics that require the numerical solution of matrix equations. Some problems that need matrix techniques include: finding the best position and orientation to match one object to another (one example of a "least squares" problem), creating a surface that drapes over a given collection of points with minimal creases (thin-plate splines), and simulation of materials such as water or cloth. Matrix formulations of problems come up often enough in graphics that I rank this area very high on my list of topics to know.
Book recommendation:


Matrix Computations
Gene Golub and Charles Van Loan
Johns Hopkins University Press
Physics
Physics is obviously a field of study in its own right and not a sub-category of mathematics. Nevertheless, physics and mathematics are closely tied to one another in several areas within computer graphics. Examples of graphics problems that involve physics include how light interacts with the surfaces of objects, how light bounces around in a complex environment, the way people and animals move, and the motion of water and wind. Knowledge of physics is important for simulating all of these phenomena. This is closely tied to solving differential equations, which I shall discuss next.

Numerical Solutions of Differential Equations
It is my belief that techniques for solving differential equations are extremely important to computer graphics. As we just discussed, much of computer graphics is devoted to simulating physical systems from the real world. How waves form in water and how an animal walks across the ground are two examples of physical simulation. Simulation of physical systems very often leads to numerical solutions of differential equations. Note that this is actually very different than symbolic solutions to differential equations. Symbolic solutions are exact answers, and usually can be found only for extremely simple sets of equations. Sometimes a college course called "Differential Equations" will only examine symbolic solutions, and this will not help much for most computer graphics problems.
In physical simulation, one breaks the world down into little pieces that are represented as large vectors. Then the relations between the parts of the world are captured in the entries in matrices. Solving the matrix equations that arise is not usually done exactly, but is instead performed by carrying out a long series of calculations that yields an approximate solution as a list of numbers. This is what numerical solutions of differential equations are about. Note that the solution of matrix equations is an intimate part of numerical solutions to differential equations.


Optimization
Quite often in computer graphics we are looking for a description of an object or a collection of objects that satisfies some desired goal. Examples include looking for the positions of lights that give a certain "feeling" to how a room is lit, figuring out how an animated character can move its limbs to carry out a particular action, and positioning shapes and text on a page so that the result does not look cluttered. Each of these examples can be stated as an optimization problem. Ten years ago there was little in the graphics literature that made use of optimization techniques, but the field is using optimization more and more in recent work. I think that optimization will continue to play an increasingly important role in computer graphics.

Probability and Statistics
There are a number of areas within computer graphics that make use of probability and/or statistics. Certainly when researchers carry out studies using human subject, they require statistical methods in order to perform the analysis of the data. Graphics related areas that often make use of human subjects include Virtual Reality and Human-Computer Interaction (HCI). In addition, many computer descriptions of the real world involve using various probabilities that a given action will occur. The probability that a tree limb will branch during growth or that a synthetic animal will decide to walk in a particular direction are two examples of this. Finally, some techniques for solving difficult equations make use of random numbers to estimate their solutions. An important example of this is a class of techniques known as Monte Carlo methods that are often used to determine how light propagates in an environment. These are just a few of the ways that probability and statistics are used in computer graphics.

Computational Geometry
Computational geometry is the study of efficient ways to represent and manipulate geometry within the computer. Typical problems include testing whether two objects collide, deciding how to break up a polygon into triangles, and finding the nearest point in a group to a given location. This area is a blend of algorithms, data structures and mathematics. Researchers in graphics who work on creating shapes (modeling) draw heavily upon this area.
Book recommendations:


Computational Geometry in C
Joseph O'Rourke
Cambridge University Press
[undergraduate text]

Computational Geometry: An Introduction
Franco Preparata and Michael Shamos
Springer-Verlag
[the classic text, somewhat dated]

Concluding Words: Applied and Pure Mathematics
One common thread to many of the mathematical topics that are associate with graphics is that they are from the applied side instead of the theoretical side of mathematics. This should not come as a surprise. Many of the problems in computer graphics are closely tied to problems that physicists and engineers have studied, and the mathematical tools of the physicist and of the engineer are overwhelmingly the tools that graphics researchers use. Most of the topics that make up theoretical ("pure") mathematics are seldom put to use in computer graphics. This should not be taken as an absolute truth, however. We should pay attention to examples from other fields: molecular biology is now drawing upon knot theory for the study of DNA dynamics, and subatomic physics makes use of abstract group theory. Who can tell when a "pure" mathematics topic will be put to use in computer graphics?
There are a few areas of mathematics that seem as though they ought to be important and yet never really play a large part in computer graphics. Perhaps the most interesting of these areas is topology. The usual one-sentence description of topology is the study of why a doughnut and a coffee cup are the same. The answer is that they are both surfaces with one hole. Here we are talking about ideas from topology. Aren't surfaces a big part of computer graphics? Yes, but it turns out that most of the ideas in topology that are useful to graphics can be learned in a first course in differential geometry. Differential geometry studies the *shapes* of surfaces, whereas topology studies things such as which parts of a surface are next to which other parts. I have seen very little topology that is put to use in graphics, and I believe that this is because much of topology is concerned with rather abstract sets, and that much of topology is far removed from the concepts in three dimensional Euclidean space that is so central to most of graphics. There are times when the formalism of topology (the symbolic notation) is a convenient way to express ideas in graphics, but the actual tools from abstract topology so seldom play a role in graphics. Study this beautiful subject for its own sake, but don't expect an immediate payoff for graphics!

I have been asked a few times whether either abstract algebra (group theory, rings, etc.) or number theory play a role in computer graphics. Not much that I have seen. These subjects, like topology, are areas that are full of beautiful ideas. Unfortunately these ideas seldom find their way into computer graphics.
 

 

 

智尚简介  |  诚聘英才  |  联系我们  |  友情链接
版权所有:@2007-2009 智尚 电话:0760-86388801 客服QQ:875870576
地址:广东中山市学院路1号 邮编:528402 皖ICP备10002124号
  • 境外将美元汇入中国方法渠道方式
  • 财产、厂房和设备按照IAS16审计
  • IFRS:國際財務報告準則
  • IFRS:國際財務報告準則
  • 德国酒店中德两国文化的交融和冲突
  • 工业翻译中译英考试题目
  • Introduction to en
  • 从汉法主要颜色词汇的文化内涵看两国文
  • Un problème chez &
  • INTERNATIONAL AND
  • IHRM Individual re
  • НАЦИОНАЛЬНО-КУЛЬТУ
  • ТЕОРЕТИЧЕСКИЕ ОСНО
  • SPE会议论文翻译
  • Project Proposal 地
  • 中国意大利家用电器领域合作的可能性和
  • Career Goal与Career
  • Caractéristiques e
  • L'influence de l'S
  • 英语口语教学改革途径测试与分析
  • 语用学理论与高校英语阅读教学
  • 日本语研究计划书写作申请
  • To Whom it May Con
  • 译文中英对照葡萄酒产品介绍
  • 韩国传统用餐礼节
  • 日本語の暧昧語婉曲暧昧性省略表現以心
  • 研究计划书写作要求
  • Outline Impact of
  • 计算机工程与网络技术国际学术会议EI
  • 微软的人脸3D建模技术 Kinect
  • Qualitative resear
  • 新闻的感想
  • 与老师对话的测验
  • 韩语论文修改意见教授老师
  • 华南师范大学外国语言文化学院英语专业
  • APA论文写作格式
  • the surrounding en
  • Современное состоя
  • CHIN30005 Advanced
  • The APA Harvard Sy
  • Annotated Bibiolgr
  • Acker Merrall & Co
  • 资生堂进入中国市场的经营策略
  • Introduction to Pu
  • 软件测试Introduction t
  • Pro Ajax and java
  • 用户体验The user exper
  • AJAX Design Patter
  • The Rich Client Pl
  • Keyframer Chunks
  • 3D-Studio File For
  • Mathematics for Co
  • The Linux MTD, JFF
  • 中日体态语的表现形式及其差异
  • CB 202 System Anal
  • 论日本恐怖电影与好莱坞恐怖片的异同
  • 俄语论文修改
  • 古典诗歌翻译英语论文资料
  • <한중
  • 公司治理(Corporate Gov
  • 英语习语翻译中的移植与转换
  • 日语(上) 期末复习题
  • ACTIVIDAD CORRESPO
  • 리더&#
  • 购物小票翻译
  • 论文摘要翻译英文
  • Bedeutung der Prod
  • ELABORACIÓN
  • 英语考卷代写代做
  • 日本語の感情形容詞の使用特徴——ドラ
  • 未来創造学部卒業研究要領
  • 光之明(国际)低碳产品交易中心介绍
  • 中国の茶文化と日本茶道との比較—精神
  • 목차
  • Final Project Grad
  • 東京学芸大学>センターなど教員許 夏
  • 東京学芸大学 大学院教育学研究科(修
  • 白澤論
  • ポスト社会主義モンゴルにおけるカザフ
  • 言語と色彩現象—史的テクストをもとに
  • 渡来人伝説の研究
  • 中日企业文化差异的比较
  • Modellierung des B
  • 日本大学奖学金申请
  • 大学日语教师尉老师
  • 석사&#
  • Chemical Shift of
  • 中韩生日习俗文化比较
  • Measure of Attachm
  • 酒店韩国客人满意度影响因素研究
  • 要旨部分の訂正版をお送りします
  • Writing and textua
  • 日本企業文化が中国企業にもたらす啓示
  • 日本情报信息专业考试题
  • 雅丽姿毛绒时装有限公司网站文案(中文
  • 語用論の関連性理論「carston」
  • 組織行動と情報セキュリティ.レポート
  • Bedarf
  • 中日企业文化差异的比较
  • 从语形的角度对比中日“手”语义派生的
  • 中国明朝汉籍东传日本及其对日本文化的
  • 《中日茶道文化比较》
  • 从中日两国电视剧看中日文化之差异
  • FOM Hochschule für
  • Die Rolle der Bank
  • A Penny for Your T
  • 也谈ガ行鼻浊音的语音教学问题
  • On the Difference
  • 衣装は苗族の伝統文化の主な表現形式
  • 日语语言文学硕士论文:日本の义务教育
  • 日本的茶文化
  • Samsung Electronic
  • Synthesis and char
  • The traveling mark
  • The Japanese Democ
  • 四季の歌
  • CapitoloI La situa
  • The Effects of Aff
  • WEB服务安全保障分析
  • 音译汉语和英语的相互渗透引用
  • 中日两国服装贸易日语论文写作要求
  • 日语论文修改意见
  • 英语作文题目
  • 申请留学社会经验心得体会
  • BE951 Coursework O
  • Overview township
  • 日本の長寿社会考察
  • 日语老师教师电话联系方式
  • 「依頼」に対する中上級者の「断り」に
  • 日本語序論
  • component formatti
  • 日文文献资料的查阅方法
  • 日文文献资料的查阅方法
  • 日语文献检索日文文献搜索网站
  • 日本留学硕士及研究生的区别硕士申请条
  • Adult attachment s
  • レベルが向上する中国の日本学研究修士
  • 日本留学硕士(修士)与研究生的区别
  • Nontraditional Man
  • Engine Lathes
  • Automatic Screw M
  • Chain Drives
  • V-belt
  • Bestimmung der rut
  • 中山LED生产厂家企业黄页大全
  • 活用神话的文化背景来看韩国语教育方案
  • MLA論文格式
  • 旅游中介
  • MLA论文格式代写MLA论文
  • 小論文參考資料寫作格式範例(採APA
  • clothing model; fi
  • 共同利用者支援システムへのユーザー登
  • 太陽風を利用した次世代宇宙推進システ
  • RAO-SS:疎行列ソルバにおける実
  • 井伏鱒二の作品における小動物について
  • 從“老祖宗的典籍”到“現代科學的証
  • “A great Pecking D
  • 净月法师简历
  • 科技论文中日对照
  • 翻译的科技论文节选
  •  IPY-4へ向ける準備の進み具合
  • 論文誌のJ-STAGE投稿ʍ
  • Journal of Compute
  • 学会誌 (Journal of Co
  • 学会誌JCCJ特集号への投稿締切日の
  • 「化学レポート:現状と将来」
  • 韩语翻译个人简历
  • 九三会所
  • 事態情報附加連体節の中国語表現につい
  • International Bacc
  • HL introduction do
  • コーパスを利用した日本語の複合動詞の
  • 日语分词技术在日语教材开发中的应用构
  • 北極圏環境研究センター活動報告
  • 语用学在翻译中的运用
  • 日汉交替传译小议——从两篇口译试题谈
  • 総合科学専攻における卒業論文(ミニ卒
  • Heroes in August W
  • 玛雅文明-西班牙语论文
  • 西班牙语论文-西班牙旅游美食建筑
  • 八戸工業大学工学部環境建設工学科卒業
  • 親の連れ子として離島の旧家にやって来
  • 「米ソ協定」下の引揚げにおいて
  • タイトル:少子化対策の国際比較
  • メインタイトル:ここに入力。欧数字は
  • 東洋大学工学部環境建設学科卒業論文要
  • IPCar:自動車プローブ情報システ
  • Abrupt Climate Cha
  • Recognition of Eco
  • Complexities of Ch
  • Statistical Analys
  • Dangerous Level o
  • 中日对照新闻稿
  • 俄汉语外来词使用的主要领域对比分析
  • 两种形式的主谓一致
  • 韩语论文大纲修改
  • 중국&#
  • 俄语外来词的同化问题
  • 北海道方言中自发助动词らさる的用法与
  • 论高职英语教育基础性与实用性的有机结
  • 论高职幼师双语口语技能的培养
  • 论高职幼师英语口语技能的培养
  •     自分・この眼&
  • 成蹊大学大学院 経済経営研究科
  • アクア・マイクロ
  • 公共経営研究科修士論文(政策提言論文
  • 基于学习风格的英语学习多媒体课件包
  • 后殖民时期印度英语诗歌管窥
  • 汉语互动致使句的句法生成
  • 笔译价格
  • 携帯TV電話の活用
  • 英語学習におけるノートテイキング方略
  • 強化学習と決定木によるエージェント
  • エージェントの行動様式の学習法
  • 学習エージェントとは
  • 強化学習と決定木学習による汎用エージ
  • 講演概要の書き方
  • 对学生英语上下义语言知识与写作技能的
  • 英汉词汇文化内涵及其翻译
  • 论大学英语教学改革之建构主义理论指导
  • 国内影片片名翻译研究综观及现状
  • 平成13年度経済情報学科特殊研究
  • Comparison of curr
  • 英文论文任务书
  • This project is to
  • the comparison of
  • デジタルペンとRFIDタグを活用した
  • 無資格者無免許・対策関
  • 創刊の辞―医療社会学の通常科学化をめ
  • gastric cancer:ade
  • 揭示政治语篇蕴涵的意识形态
  • 试论专业英语课程项目化改革的可行性
  • 多媒体环境下的英语教学交际化
  • 翻译认知论
  • 读高桥多佳子的《相似形》
  • 以英若诚对“Death of A S
  • 论沈宝基的翻译理论与实践
  • 论语域与文学作品中人物会话的翻译
  • 浅析翻译活动中的文化失衡
  • 谈《傲慢与偏见》的语言艺术
  • 论语言结构差异对翻译实效性的影响
  • 英语传递小句的认知诠释
  • 英语阅读输入的四大误区
  • 在语言选择中构建社会身份
  • 私たちが見た、障害者雇用の今。
  • 震災復興の経済分析
  • 研究面からみた大学の生産性
  • 喫煙行動の経済分析
  • 起業の経済分析
  • 高圧力の科学と技術の最近の進歩
  • 「観光立国」の実現に向けて
  • 資源としてのマグロと日本の動向
  • 揚湯試験結果の概要温泉水の水質の概要
  • 計量史研究執筆要綱 
  • 日中友好中国大学生日本語科卒業論文
  • 제 7 장
  • 전자&
  • 現代國民論、現代皇室論
  • 記紀批判—官人述作論、天皇宗家論
  • 津田的中國觀與亞洲觀
  • 津田思想的形成
  • 反思台灣與中國的津田左右吉研究
  • 遠隔講義 e-learning
  • 和文タイトルは17ポイント,センタリ
  • Design And Impleme
  • Near-surface mount
  • 중국 &
  • 韩国泡菜文化和中国的咸菜文化
  • 무한&#
  • 수시 2
  • 韩流流向世界
  • 무설&#
  • 要想学好韩语首先得学好汉语
  • 사망&#
  • Expression and Bio
  • Increased Nuclear
  • 论女性主义翻译观
  • 健康食品の有効性
  • 日语的敬语表现与日本人的敬语意识
  • 日语拒否的特点及表达
  • Solve World’s Prob
  • 韩汉反身代词“??”和“自己”的对比
  • 韩汉量词句法语义功能对比
  • 浅析日语中的省略现象
  • 浅谈日语中片假名的应用
  • 土木学会論文集の完全版下印刷用和文原
  • 英语语调重音研究综述
  • 英汉语言结构的差异与翻译
  • 平等化政策の現状と課題
  • 日本陸軍航空史航空特攻
  • 商务日语专业毕业生毕业论文选题范围
  • 家庭内暴力の現象について
  • 敬语使用中的禁忌
  • Treatment of high
  • On product quality
  • Functional safety
  • TIDEBROOK MARITIME
  • 日文键盘的输入方法
  • 高职高专英语课堂中的提问策略
  • 对高校学生英语口语流利性和正确性的思
  • 二语习得中的文化错误分析及对策探讨
  • 高职英语专业阅读课堂教学氛围的优化对
  • 趣谈英语中的比喻
  • 浅析提高日语国际能力考试听力成绩的对
  • 外语语音偏误认知心理分析
  • 读格林童话《小精灵》有感
  • “新世纪”版高中英语新课教学导入方法
  • 初探大学英语口语测试模式与教学的实证
  • 中加大学生拒绝言语行为的实证研究
  • 目的论与翻译失误研究—珠海市旅游景点
  • 对学生英语上下义语言知识与写作技能的
  • 英语水平对非英语专业研究生语言学习策
  • 英语教学中的文化渗透
  • 中学教师自主学习角色的一项实证研究
  • 叶维廉后期比较文学思想和中诗英译的传
  • 钟玲中诗英译的传递研究和传递实践述评
  • 建构主义和高校德育
  • 论习语的词法地位
  • 广告英语中的修辞欣赏
  • 从奢侈品消费看王尔德及其唯美主义
  • 论隐喻的逆向性
  • 企盼和谐的两性关系——以劳伦斯小说《
  • 论高等教育大众化进程中的大学英语教学
  • 试论《三四郎》的三维世界
  • 李渔的小说批评与曲亭马琴的读本作品
  • 浅谈中国英语的表现特征及存在意义
  • 湖南常德农村中学英语教师师资发展状况
  • 海明威的《向瑞士致敬》和菲茨杰拉德
  • 围绕课文综合训练,培养学生的写作能力
  • 指称晦暗性现象透析
  • 西部地区中学生英语阅读习惯调查
  • 论隐喻的逆向性
  • 认知体验与翻译
  • 试析英诗汉译中的创造性
  • 言语交际中模糊语浅议
  • 认知体验与翻译
  • 关于翻译中的词汇空缺现象及翻译对策
  • 从互文性视角解读《红楼梦》两译本宗教
  • 从目的论看中英动物文化词喻体意象的翻
  • 高校英语语法教学的几点思考
  • 高校体艺类学生外语学习兴趣与动机的研
  • 大学英语自主学习存在的问题及“指导性
  • 从接受美学看文学翻译的纯语言观
  • 《红楼梦》两种英译本中服饰内容的翻译
  • 法语对英语的影响
  • 影响中美抱怨实施策略的情景因素分析
  • 代写需求表
  • 跨文化交际中称赞语的特点及语言表达模
  • 实现文化教育主导外语教育之研究
  • 试论读者变量对英语阅读的影响
  • 从文化的角度看英语词汇中的性别歧视现
  • 合作原则在外贸函电翻译中的运用
  • Default 词义探悉
  • 从图示理论看英汉翻译中的误译
  • 许国璋等外语界老前辈所接受的双语教学
  • “provide” 和 “suppl
  • 由英汉句法对比看长句翻译中的词序处理
  • 1000名富翁的13条致富秘诀中英对
  • 英语中18大激励人心的谚语中英对照
  • 反省女性自身 寻求两性和谐---评
  • 浅析翻译中的“信”
  • 集体迫害范式解读《阿里》
  • 横看成岭侧成峰-从美学批评角度解读《
  • 福柯的话语权及规范化理论解读《最蓝的
  • 播客技术在大学英语教学中的应用
  • 如何在山区中等专业学校英语课堂实施分
  • 奈达与格特翻译理论比较研究
  • 语篇内外的衔接与连贯
  • Economic globaliza
  • 用概念整合理论分析翻译中不同思维模式
  • 英语新闻语篇汉译过程中衔接手段的转换
  • 对易卜生戏剧创作转向的阐释
  • 动词GO语义延伸的认知研究
  • 反思型教师—我国外语教师发展的有效途
  • 输入与输出在词汇学习中的动态统一关系
  • 教育实践指导双方身份认同批判性分析
  • 中英商务文本翻译异化和归化的抉择理据
  • 从艺术结构看《呼啸山庄》
  • 从儒家术语“仁”的翻译论意义的播撒
  • 论隐喻与明喻的异同及其在教学中的启示
  • 话语标记语的语用信息在英汉学习型词典
  • 论森欧外的历史小说
  • 翻译认知论 ——翻译行为本质管窥
  • 中美语文教材设计思路的比较
  • 美国写作训练的特点及思考
  • UP语义伸延的认知视角
  • 成功的关键-The Key to S
  • 杨利伟-Yang Liwei
  • 武汉一个美丽的城市
  • 对儿童来说互联网是危险的?
  • 跨文化交际教学策略与法语教学
  • 试论专业英语课程项目化改革的可行性-
  • 论沈宝基的翻译理论与实践
  • 翻译认知论——翻译行为本质管窥
  • 母爱的虚像 ——读高桥多佳子的《相似
  • 浅析英语广告语言的特点
  • 中国の株価動向分析
  • 日语拒否的特点及表达
  • 日语的敬语表现与日本人的敬语意识
  • 浅析日语中的省略现象
  • 浅谈日语中片假名的应用
  • 浅谈日语敬语的运用法
  • 浅谈日语会话能力的提高
  • ^论日语中的年轻人用语
  • 敬语使用中的禁忌
  • 关于日语中的简略化表达
  • 关于日语的委婉表达
  • The Wonderful Stru
  • Of Love(论爱情)
  • SONY Computer/Notb
  • 从加拿大汉语教学现状看海外汉语教学
  • MLA格式简要规范
  • 浅析翻译类学生理解下的招聘广告
  • 日本大学排名
  • 虎头虎脑
  • 杰克逊涉嫌猥亵男童案首次庭审
  • Throughout his car
  • June 19,1997: Vict
  • 今天你睡了“美容觉”吗?
  • [双语]荷兰橙色统治看台 荷兰球员统
  • Father's Day(异趣父亲节
  • 百佳电影台词排行前25名
  • June 9,1983: Thatc
  • June 8, 1968: Robe
  • 60 players mark bi
  • June 6, 1984: Indi
  • 日本の専門家が漁業資源を警告するのは
  • オーストリア巴馬は模範的な公民に日本
  • 日本のメディアは朝鮮があるいは核実験
  • 世界のバレーボールの日本の32年の始
  • 日本の国債は滑り降りて、取引員と短い
  • 广州紧急“清剿”果子狸
  • 美国“勇气”号登陆火星
  • 第30届冰灯节哈尔滨开幕
  • 美国士兵成为时代周刊2003年度人物
  • BIRD flu fears hav
  • 中国チベット文化週間はマドリードで開
  • 中国チベット文化週間はマドリードで開
  • 中国の重陽の文化の発祥地──河南省西
  • シティバンク:日本の国債は中国の中央
  • イギリスは間もなく中国にブタ肉を輸出
  • 古いものと新しい中国センター姚明の失
  • 中国の陝西は旅行して推薦ӥ
  • 中国の電子は再度元手を割って中国の有