论文代写-英语日语韩语德语俄语法语
论文翻译-英语日语韩语德语俄语法语
论文修改-英语日语韩语德语俄语法语
代写作业代考试题考卷-英语日语韩语德语俄语法语
作文报告申请书文章等代写-英语日语韩语德语俄语法语
研究计划书代写-英语日语韩语德语俄语法语
西班牙语意大利语论文代写翻译修改
论文发表-英语日语韩语德语俄语法语
英语 English
日语 日本語
韩语한국의
法语 Français
德语 Deutsch
俄语 Pусский
西语 Español
意语 Italiano
·英语论文 ·日语论文
·韩语论文 ·德语论文
·法语论文 ·俄语论文

名称:智尚工作室
电话:0760-86388801
传真:0760-85885119
地址:广东中山市学院路1号
网址:www.zsfy.org
E-Mail:cjpdd
@vip.163.com
商务QQ:875870576
微信二维码

业务联系
德语论文
N-Terminal Site-Specific Mono-PEGylation of Recombinant Human Granulocyte Colony-Stimulating Factor
添加时间: 2010-4-25 23:19:56 来源: 作者: 点击数:8182

N-Terminal Site-Specific Mono-PEGylation of Recombinant Human Granulocyte Colony-Stimulating Factor

Yongjun Nie1, Xiaojun Tan2, Wenli Wang2, Xinchang Wang1, Junhui Chen1*

1 State Key Laboratory of Pharmaceutical Biotechnology, School of Lifesciences, Nanjing University, China; 2Department of Biochemistry, School of Lifesciences, Nanjing University, China, Nanjing, China, 210093

Abstract:

Granulocyte colony-stimulating factor (G-CSF) serves as one of the most important remedies in situations of reduced numbers of circulating neutrophilic granulocytes after high-dose chemotherapy or radiotherapy in clinical. Additionally, G-CSF has also been used to mobilize peripheral blood progenitor cells for autologous stem cell transplantation. Despite of all its therapeutic values for human beings, the usage of G-CSF has a primary limitation, its short half-life in the peripheral blood. In order to solve this problem, we PEGylated the N-terminus of recombinant human granulocyte colony-stimulating factor (rhG-CSF), in a site-specific manner with methoxy poly-ethylene glycol (mPEG) propionaldehydes with an average molecular weight of either 5 kD or 20 kD, respectively, through a reactive terminal aldehyde group. With a statistical L9 (34) orthogonal test, the optimal conditions of the site-specific reaction were achieved, and under such conditions the mono-PEGylated rhG-CSF (mono-PEG-G-CSF) accounts for 72.89% of the total protein in the reaction system. We demonstrated that PEG-rhG-CSF had higher stability than unmodified rhG-CSF while incubated with protease or human serum or placed in an extreme environment such as at an extreme temperature or in a solution with extreme pH. Although the relative activity of modified rhG-CSF in stimulating the proliferation of NFS-60 cells in vitro was down-regulated, due to the blocking effects of the molecule of PEG, yet modified rhG-CSF increased the numbers of leukocytes in the blood of Kunming mice much more significantly than did unmodified rhG-CSF. In conclusion, these results show that PEGylation not only enhances the stability of rhG-CSF, but also distinctly increases its in vivo activity and thus this PEGylation promotes the clinical application of rhG-CSF.

Key Words:

rhG-CSF; PEGylation; PEG; stability; orthogonal test

Author contributions: J. C., X. W., Y. N. designed research, Y. N., X. T. and W. W. performed research, Y. N., X. T. analyzed data and X. T. wrote the paper.


重组人粒细胞集落刺激因子的N端氨基定点PEG化修饰

聂永军1,谭小军2,王文丽2,王新昌1,陈钧辉1*

1南京大学生命科学学院医药生物技术国家重点实验室;

2南京大学生命科学学院生物化学系;

中国南京 210093

摘要:

粒细胞集落刺激因子(G-CSF)是现今临床上抗肿瘤化疗、放疗手术之后最重要的辅助药物之一,它的主要功能在于刺激嗜中性粒细胞增殖以缓解由于化疗、放疗造成的免疫系统伤害。此外,G-CSF在自体干细胞移植中也用于动员外周造血干细胞。尽管G-CSF具有重大的治疗价值,然而在实际应用却受到体内半衰期过短、需要频繁重复注射的限制。为了解决这一问题,我们利用两种不同分子量(5 kD 20 kD)的单甲氧基聚乙二醇丙醛(mPEG-PAL)对重组人粒细胞集落刺激因子(rhG-CSF)的N端氨基进行了定点PEG化修饰。通过正交实验得到最佳修饰条件,此时rhG-CSF的单修饰产率达到72.89%。我们发现,PEG化的rhG-CSF比原先的rhG-CSF具有更高的体外稳定性;虽然PEG化使其体外活性受到一定限制,但是修饰后rhG-CSF的体内活性得到了很大的提高,体内作用时间得到很大延长。因此,对于rhG-CSFN端氨基定点PEG化修饰可以显著提到rhG-CSF的临床应用价值。

关键词:

重组人粒细胞集落刺激因子(rhG-CSF;聚乙二醇(PEG); 聚乙二醇化;稳定性;正交实验


Introduction


Since the purification of granulocyte colony-stimulating factor (G-CSF) from human in 1979 [1], researches on G-CSF have revealed it as the principal cytokine regulating neutrophil development and function [2]. Because of its proliferation activity on granulocytic progenitors and its mobilization activity on hematopoietic progenitor cells [3, 4], leading to increased numbers of circulating neutrophilic granulocytes, recombinant human G-CSF (rhG-CSF) has become one of the most important therapeutic agents for situations of neutropenia in cancer patients receiving high-dose chemotherapy [5, 6] or in patients suffering from severe congenital disorders [7, 8]. In addition, G-CSF has been shown to have distinct functions on resisting infections like foot infections in diabetics [9], depending on the type of infection and its route delivery [1]. Despite of such clinical value for human beings, the outpatient use of G-CSF is greatly limited by the short half-life of G-CSF in vivo and administration of G-CSF 1 or 2 times per day causes many allergic responses. Thus, a molecular with a longer half-time in vivo is required to lessen the number of administrations.

One important method to handle the problem of the short circulating half-time of proteins or peptides in vivo is to conjugate them with poly-ethylene glycol (PEG), a widely investigated polymer used for covalent modification of biological macromolecules, especially for proteins and peptides [10]. PEG is characterized by little toxicity [11] and no immunogenicity and antibodies to PEG are generated in rabbits only if PEG is combined with highly immunogenic proteins [12]. PEGylation improves pharmacokinetics by increasing the molecular mass of proteins and peptides and shielding them from proteolytic enzymes [13]. Early reports described the PEG conjugates of a wide range of proteins, including human growth hormone, interferon, insulin, granulocyte-colony stimulating factor (G-CSF), and interleukin II [14], but most of these proteins were not site-specifically PEGylated. Only recently, PEGylation of proteins in a site-specific manner has been achieved by virtue of a special class of PEG derivatives under specific reaction conditions [15~17]. Site-specific PEGylation of a certain protein provides us with opportunities to obtain mono-PEGylated product, thus ensures the purity of the chemical component of the product, which is rather crucial in pharmacy.

In this study, we PEGylated the N-terminus of rhG-CSF in a site-specific manner with two groups of methoxy poly-ethylene glycol propionaldehydes (mPEG-PAL) with an average molecular weight of 5 kD and 20 kD, respectively, through a reactive terminal aldehyde group. The optimal conditions for the N-terminal mono-PEGylation were identified through a statistical L9 (34) orthogonal test and the product were shown to be pure and unitarily modified. We demonstrated that PEGylation not only enhances the stability of rhG-CSF, but also distinctly increases its in vivo activity and thus has promoted its clinical applications.


Materials and methods

Materials

Recombinant human G-CSF, the growth-factor-dependent NSF-60 mouse cell line and the Kunming mice were donated by ZhongKai Bio-pharma (Suzhou, Jiangsu, China). The 5 kD mPEG- propionaldehyde was purchased from SunBio (Anyang city, Seoul, Korea); 20 kD mPEG-propionaldehyde was purchased form Beijing KaiZheng Biotech (Beijing, China). Trypsin, dimethyl sulfoxide (DMSO) and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) were obtained from Amresco Inc. (Solon, OH, USA). RPMI 1640 medium and bovine calf serum were obtained from Hyclone (Logan, UT, USA).

PEGylation of rhG-CSF with PEG-Propionaldehyde Derivatives

The optimal conditions of the site-specific reaction were identified with a statistical L9 (34) orthogonal test. The four major factors that determine the site-specific reaction are molar ratio of mPEG propionaldehyde to rhG-CSF, pH, temperature and time, and Table 1 shows the three levels of each factor. Reactions were terminated the reactions by adjusting pH to 3.5 with 1 M HCl, and analyzed the samples with SDS-PAGE and Gelworks 1D intermediate software system.

Separation and Purification by ÄCTA FPLC

The reaction mixture was loaded onto a CM Sepharose FF cation exchange column (1.0 cm × 20 cm) preequilibrated with 20 mM sodium acetate, pH 4.5 (buffer A), at a flow rate of 1.0 mL/min using a Pharmacia LCC 501 Plus FPLC system. The column was washed with 300 mL of buffer A before a ladder gradient to 20%, 40%, and 60% buffer B (buffer A + 1 M NaCl) was applied about 5 column volumes per gradient. The fractions were analyzed by non-reducing SDS-PAGE and Gelworks 1D intermediate software system. The samples containing mono-PEGylated and unmodified rhG-CSF were collected sequentially. Samples were stored at -20 after dialysis and lyophilization.

In vitro bioassay

The in vitro activity of the PEG conjugates was determined using the MTT cell-proliferation assay with the G-CSF-dependent NFS-60 cell line [18]. The assay was based on protocols from the American Type Culture Collection and Bowen et al [19]. The NFS-60 cells were maintained in RPMI 1640 medium with 15% (v/v) bovine calf serum. Cells were split 3–4 days before each assay. Seven 2-fold dilutions of the G-CSF or conjugates were prepared in RPMI 1640 supplemented with bovine calf serum. Duplicate aliquots of 100 μL were prepared in 96-well plates. The NFS-60 cells were washed three times in assay medium, and the cell concentration was adjusted to 2 × 105 cells/mL in assay medium. They were plated in a volume of 50 μL/well, resulting in 1 × 104 cells/well, giving a final volume of 150 μL/well. Cultures were incubated for 48 hours at 37 in a fully humidified atmosphere of 5% CO2 in air, then pulsed with 20 μL of 5 mg/mL MTT reagent for the next 5 hours of incubation. When the purple precipitates were clearly visible under the microscope, 100 μL of detergent (20 mM HCl, 10% (v/v) TritionX-100 in isopropyl alcohol) was added and the absorbance in each well was measured at 570 nm in the microtiter plate reader. The absorbance was plotted against the dilute multiple in the logarithm coordinate system. PEG-G-CSF potency was calculated using the formula below (equation 1):

            (Eq. 1)

where Ps = potency of the sample (IU/mL), Ds = dilute multiple of the sample, Pr = potency of the reference (IU/mL), Dr = dilute multiple of the reference, Es = dilution factor of 50% effective activity of sample, and Er = dilution factor of 50% effective activity of reference.

Thermal and pH Stability of mPEG-G-CSF

PEG-G-CSF and G-CSF at concentrations of 20 μg protein/mL in phosphate buffered saline (PBS) pH 7.6 were incubated at 4 and 60 for indicated periods. All the samples were filtered through 0.22 μm filters and stored at –70 . The activity of the samples was estimated in the MTT cell proliferation assay.

The pH stability of the PEG-G-CSF was assessed by incubation at 37 at pH 2.2 and 11.0 for periods of 1, 2, 4, 8, 16, and 32 hours. All the samples were filtered through 0.22 μm filters and stored at –70 . The activity of the samples was estimated using the MTT cell proliferation assay.

Stability in Trypsin and Human Serum

In the trypsin stability assay, 20 μg protein/mL of PEG-G-CSF or G-CSF were incubated at 37 with trypsin at a protein/trypsin ratio of 100: 1. Aliquots (100 μL) were taken at 0, 5, 10, 20, 40, 80 and 160 minutes.

Human serum was prepared using the following procedure. Fresh human blood was incubated at 4 for 30 minutes, and then centrifuged at 3000 rpm for 15 minutes. The supernatant fluid was stored in aliquots at –70 until the assay was performed. PEG-G-CSF and G-CSF at 200 μg/mL in PBS, pH 7.6, were diluted to 20 μg protein/mL with human serum. The mixtures were incubated at 37; aliquots (100 μL) were taken at 0, 1, 2, 4, 8, 16, and 32 hours.

All the 100 μL aliquots were diluted with 900 μL RPMI 1640 (without bovine serum) to quench the reaction. The relative activity was analyzed in the MTT cell proliferation assay.

In vivo bioassay

The activity of the mono-PEG-G-CSF to increase leukocyte numbers was examined using Kunming mice. Fifteen mice, 6–10 weeks old, were used for this study and were housed in air-conditioned rooms with a 12-hour light and dark cycle. The G-CSF and PEG-G-CSF were diluted to 25 μg protein/mL with normal saline. The in vivo bioactivity of the PEG-G-CSF conjugates was assessed by administering a single intravenous dose of 5 μg/animal (n = 5). A parallel group of mice (n = 5) received G-CSF as controls. Blood samples were collected at 0 (predose), 8, 24, 48, and 72 hours post-dosing for each group of mice. The granulopoietic activity was determined by counting the number of white blood cells (WBCs).

Results


Mono-PEGylation of rhG-CSF under the optimal conditions identified through the orthogonal tests

PEGylation of rhG-CSF is an organic reaction, which could be influenced by a host of factors. The numerous combinations of, different factors with different levels put the identification of the optimal reaction conditions into a rather knotty procedure. To handle this problem, we employed our time into the statistical L9(34) orthogonal tests, the results of which was analyzed by SDS-PAGE. The mono-PEGylation of rhG-CSF was better in Lane 5 and 7 (Figure 1A) and the ratios of mono-PEGylated rhG-CSF were 52.67% and 66.52% in Lane 5 and 7 (Table 2), respectively. High ratios of PEG to rhG-CSF brought about higher ratios of PEGylated rhG-CSF (Lane 3, 5, and 7 in Figure 1A, less rhG-CSF left), but it also caused more multi-PEGylation of rhG-CSF (Lane 3 and 5 in Figure 1A, not very evident in Lane 7). The orthogonal analysis of the tests’ results indicated that two factors, time and the molar ratio of mPEG to rhG-CSF, played the most important roles during the reaction and the other two factors, pH and temperature, were much less pivotal in the process (Table 2).

In Table 2, the maximal Kx of each factor also provides us with the best level of the factor, from which we worked out the optimal conditions for the reaction: 48 hours (longer than 24 hours, so as to let more PEGylation reactions happen); pH5.0; molar ratio of mPEG to rhG-CSF 10:1 (not larger than 10:1 in order to prevent too much multi-PEGylation); 20 ℃. Under the optimal conditions, the ratio of mono-PEGylated rhG-CSF turned out to be 72.89%, higher than that in Lane 5 and 7 in the above orthogonal tests (Figure 1C), which demonstrated the feasibility of orthogonal tests dealing with some experiments characterized by lots of combinations of different factors with different levels.

Isolation and Purification of Mono-PEG-G-CSF

The desired products, the two kinds of mono-PEG-G-CSFs modified with mPEG-PAL of an average molecular weight of 5 kD and 20 kD respectively, were clearly separated from unmodified rhG-CSF and multi-PEGylated rhG-CSF by cation exchange fast protein liquid chromatogram (Figure 2A and 2B). The purity of the two mono-PEG-G-CSFs after dialysis and lyophilization was examined by cation exchange fast protein liquid chromatogram (2C and 2D) and further examined by SDS-PAGE analysis (Figure 2E) and one single band was shown for each of the two products. The results proved that the products obtained were pure and the PEG-residue count was 1 for each rhG-CSF molecular, suggesting that the product was unitarily PEGylated.

PEGylation Retains the Activity of rhG-CSF in vitro

  The relative activities of mono-PEGylated rhG-CSFs in vitro were examined so as to judge whether PEGylation removed the activity of rhG-CSF. Absolute activities of rhG-CSF and PEGylated rhG-CSF were first detected through cell proliferation assay by MTT and the results were transferred into relative activities, as shown in Figure 3. The relative activities of PEG(5kD)-G-CSF and PEG(20kD)-G-CSF was down-regulated to about 67% and 40%, respectively, of that of unmodified rhG-CSF. The inhibition effect of the PEG molecules on the contacts between rhG-CSF and NFS-60 cells can be responsible for the down-regulation of the activity of modified rhG-CSF, since the PEG molecules are on the surface of rhG-CSF. This suggested that PEGylation did not destroy the biological activity of rhG-CSF.

PEGylation enhances the stability of rhG-CSF in vitro

According to Figure 4, both modified and unmodified rhG-CSFs show relatively low stability in high temperature or high pH or in trypsin and relatively higher stability in low pH or human serum within a short time scale (less than 32 h), and all of them remain good activity (~96% activity remains after 64 h) in neutral environments in 37 . Except the experiment in 37 , all other stability assays in vitro indicated that PEG(20 kD)-G-CSF was more resistant than PEG(5 kD)-G-CSF and much more resistant than unmodified rhG-CSF to different environmental conditions.

Modified and unmodified rhG-CSFs were all stable in 37 within 64 h (A), but all of them decomposed quickly in 60 , with PEGylated rhG-CSFs in lower speeds than unmodified rhG-CSF (B). After incubation in 60 for 8 h, 10% of G-CSF remained, yet 40% of PEG(20 kD)-G-CSF and 30% of PEG(5 kD)-G-CSF was left(Figure 4B). Hence, PEGylation increased the thermal stability of rhG-CSF.

Recombinant human G-CSF was more or less of the same stability with PEGylated rhG-CSFs in pH 2.2 (Figure 4C) and 7.0 (Figure 4A), but in pH 11.0 (Figure 4D) the half-life of rhG-CSF was only about 6 h while those of PEG(5 kD)-G-CSF and PEG(20 kD)-G-CSF were elongated to 12 h and more than 52 h, respectively. This indicated that PEGylated rhG-CSF had distinctly higher acid-base stability than unmodified rhG-CSF.

After 32 h of incubation with human serum, the denaturalization ratio of rhG-CSF and PEG(5 kD)-G-CSF reached 20% and 15%, respectively, while that of PEG(20 kD)-G-CSF was only 7% (Figure 4E). When incubated with trypsin for 10 h, over 75% of rhG-CSF in contrast to only 10% of PEG(5 kD)-G-CSF and 4% of PEG(20 kD)-G-CSF was degraded (Figure 4F). Therefore, PEGylation also significantly enhanced proteolytic stability of rhG-CSF.

Mono-PEG-G-CSF stimulates the proliferation of the leukocytes in the blood of mice more significantly than unmodified rhG-CSF

To investigate whether mono-PEGylated rhG-CSF has higher activity than unmodified rhG-CSF in vivo, the effects on leukocyte proliferation in the peripheral blood of Kunming mice after a single injection of 5 μg for each of mono-PEG-G-CSF or rhG-CSF were tested. As shown in Figure 5, the number of leukocytes in mice treated with rhG-CSF reached its highest point about 8 hours after the injection, while in mice treated with mono-PEG(5kD)-G-CSF or mono-PEG(20kD)-G-CSF, the time was prolonged to nearly 24 and 48 hours, respectively. Moreover, the peak point of leukocytes in mice treated with each mono-PEGylated rhG-CSF went distinctly higher than that in mice treated with unmodified rhG-CSF. These results adequately demonstrated that mono-PEG-G-CSF stimulates the proliferation of the leukocytes in the blood of mice more significantly than unmodified rhG-CSF, suggesting that increased activity and prolonged half time of rhG-CSF in vivo were achieved by PEGylation.


Discussion

PEGylation of proteins and peptides promotes pharmacokinetics by increasing the apparent sizes of them, shielding of antigenic and immunogenic epitopes, shielding receptor-mediated uptake by the reticuloendothelial system, and preventing recognition and degradation by proteolytic enzymes [10]. One of the most important progress of PEGylation is the introducing of sorts of PEG functional groups used to attach the PEG molecule to the protein or peptide, which allows site-directed PEGylation to be achieved under specific conditions. For instance, under acidic conditions, the aldehyde of mPEG-PAL is highly selective for the N-terminal α-amine of G-CSF because of the different pKa values of the primary amine residues in protein: pKa 7.8 for the N-terminal α-amine compared to pKa 10.1 for the ε-amino group in lysine residues [15, 20].

The optimal conditions for the N-terminal site-specific PEGylation of rhG-CSF in this work were obtained through a statistical orthogonal test. In Table 2, the maximal Kx of each factor tells us the best level of the factor: Level 3 for time and molar ratio of PEG to rhG-CSF and Level 2 for pH and temperature (i.e. 24 hours, pH 5.0, molar ratio of PEG to rhG-CSF 10:1 and 20), but the optimal conditions we identified were not the same as what the maximal Kx suggested. As either the reaction time or the molar ratio of mPEG to rhG-CSF rises from Level 1 to Level 3, the Kx of each factor increased in a positive correlation. We prolonged the optimal reaction time up to 48 hours, doubled the time of Level 3 (24 hours), looking forward to more PEGylation reactions, while confining the best molar ratio of PEG to rhG-CSF to 10:1, so as to prevent too much multi-PEGylation of rhG-CSF resulted from high ratios of PEG to rhG-CSF (Lane 3 and 5 in Figure 1, not so evident in Lane 7).

The apparent molecular weights of the mono- PEG(5 kD)-G-CSF and mono- PEG(20 kD)-G-CSF we obtained were about 26 kD and 44 kD, respectively, according to data analysis of the results of SDS-PAGE shown in Figure 4. However, the theoretical molecular weights of them, that is the sum of the molecular weights of PEG (5 kD or 20 kD) and rhG-CSF (~19.6 kD) are 24.6 kD and 39.6 kD, respectively. The reason why the apparent molecular weights of our products surpassed the theoretical values was perhaps that the highly hydration of PEG leading to the PEGylated proteins showing larger apparent molecular weights than unmodified proteins [21]. A highly hydrated crust formed on the surface of the protein molecule decreased the mobility of the protein during electrophoresis. Thus, PEGylated proteins as standards are required for the determination of the molecular weight of PEG conjugates of proteins through SDS-PAGE analysis [22].

In vitro bioactivity assay showed that PEGylation decreased the activity of rhG-CSF (Figure 3) and similar results were obtained by other studies [23, 24]. This in vitro activity decrease was reasonable because the PEG molecule on the surface of rhG-CSF protein may to some extent prevent the interaction between rhG-CSF and its receptors on the membrane of NFS-60 cells and as a result affected the in vitro activity of rhG-CSF. Despite of the restriction of activity in vitro, PEGylation significantly enhanced the in vivo activity of rhG-CSF (Figure 5). Internal environment is largely different from that in vitro, with too many factors influencing the bioactivity of rhG-CSF. The distinct increase of in vitro stability of rhG-CSF by PEGylation provides the possible explanation of the higher activity of PEGylated rhG-CSF in stimulating the proliferation of the leukocytes in the blood of mice. PEGylation protects rhG-CSF from being cleared up too quickly by the body and thus PEGylation functions as a method to slowly release the bioactivity of rhG-CSF, which overcomes the shortage of rhG-CSF in clinical use.

In summary, we PEGylated the N-terminus of rhG-CSF in a site-specific manner with mPEG-PAL through a reactive terminal aldehyde group. The purity of the products are demonstrated by ÄCTA FPLC and SDS-PAGE analysis, further proving that rhG-CSF was unitarily PEGylated and the PEG residue count for each molecule was 1, which is quite important for future development and production of PEG-rhG-CSF as a clinical agent. The stability and activity of rhG-CSF in vitro after PEGylation are enhanced to a certain extent. Moreover, promoted activity of rhG-CSF on leukocyte proliferation in the peripheral blood of Kunming mice and significantly prolonged circulating half-time of rhG-CSF in vivo are achieved by PEGylation.

Acknowledgements

The authors thank Suzhou ZhongKai Bio-Pharma. Co., Ltd. for the generous donation of recombinant human granulocyte colony-stimulating factor. This study was supported by the Research Fund for the 2006’ National Undergraduate Innovation Program.


Figure 1. Mono-PEGylated G-CSF was obtained through orthogonal tests and SDS- PAGE. (A) SDS-PAGE analysis of the orthogonal tests’ samples stained with Coomassie Brilliant Blue. Lane 1-9: nine samples in the orthogonal tests corresponding to the test number. More mono-PEGylated rhG-CSF was achieved under the optimal conditions (48 h, pH 5.0, molar ratio of mPEG to rhG-CSF 10: 1; 20 ) than under the conditions of Test 5 or 7 in the orthogonal tests: (B) SDS-PAGE analysis of the reaction sample under the optimal conditions stained with Coomassie Blue; (C) The ratio of the mono-PEGylated rhG-CSF in the reaction sample under the optimal conditions surpasses that in Lane 5 and 7 in (A).

Table 1. Factors and Levels of the Orthogonal Tests

Level

Factor

Time
(h)

pH

molar ratio
mPEG/rhG-CSF

Temperature
(
)

1

5

4.0

1:2

4

2

10

5.0

2:1

20

3

24

6.0

10:1

30

Table 2. Results of Orthogonal Testsa

test no.

time
(h)

pH

molar ratio
mPEG/rhG-CSF

temperature
(
)

RMPG b
(%)

1

1

1

1

1

0.21

2

1

2

2

2

8.12

3

1

3

3

3

27.78

4

2

1

2

3

15.94

5

2

2

3

1

52.67

6

2

3

1

2

15.45

7

3

1

3

2

66.52

8

3

2

1

3

35.78

9

3

3

2

1

31.87

K1c

36.11

82.67

51.44

84.75

K2

84.06

96.57

55.93

90.09

K3

134.17

75.1

146.97

79.5

K1/3d

12.04

27.56

17.15

28.25

K2/3

28.02

32.19

18.64

30.03

K3/3

44.72

25.03

48.99

26.5

Re

32.68

7.16

31.84

3.53

a The relative importance of the roles that the four factors played in the reaction was revealed by the results of the orthogonal tests. b RMPG: the ratios of mono-PEGylated rhG-CSF which was calculated from the gel by Gelworks 1D intermediate software system. c The value of Kx (x=1, 2 or 3) was the sum of RMPGs of a certain factor at the same level of x; the maximal Kx of a certain factor implied that x was the best level of the factor. d Kx/3 equals one third of Kx. e The difference between the maximal Kx/3 of a certain factor and the minimal one of it gave the R value, the magnitude of which was in accordance with how important the factor’s role in the reaction. Therefore, the most important two factors were time and the molar ratio of mPEG to rhG-CSF, while the other two factors, pH and temperature, were relatively not as crucial.


Figure 2. Isolated and purified of mono-PEG-G-CSF. (A and B) The profile of cation exchange fast protein liquid chromatogram (ÄCTA FPLC) of the PEGylated rhG-CSF: the average molecular weights of mPEG-PAL used are (A) 5 kD and (B) 20 kD, respectively. (C and D) The profile of ÄCTA FPLC of the purified mono-PEG-G-CSF: the average molecular weights of mPEG-PAL used are (C) 5 kD and (D) 20 kD, respectively. (E) SDS-PAGE analysis of the purified mono-PEG- G-CSF stained with Coomassie Brilliant Blue.

Figure 3. Relative activities of modified and unmodified rhG-CSFs. Absolute activities were tested by NFS-60 cells proliferation assay and the results were translated into relative activities of modified and unmodified rhG-CSF. Values are means ± SEM from three independent experiments.


Figure 4. Mono-PEG-G-CSF showed distinctly higher stability than unmodified rhG-CSF in different conditions in vitro. (A and B) The effect of PEGylation on the relative susceptibility of rhG-CSF to temperature. Modified and unmodified rhG-CSFs solutions were exposed at pH 7.0 in 37 for 64 h (A) or in 60 or 16 h (B) and the relative activities remaining was detected at different time points. (C and D) The effect of PEGylation on the relative susceptibility of rhG-CSF to pH. Solutions  of rhG-CSF and PEGylated rhG-CSFs were regulated to pH 2.2 (C) and pH 11.0 (D) and incubated in room temperature for 32 h and the relative activities remaining was detected at 1 h, 2 h, 4 h, 8 h, 16 h and 32 h, respectively. (E) The relative stability of PEG(5 kD)-G-CSF, PEG(20 kD)-G-CSF and rhG-CSF in human serum. (F) The relative resistance of PEG(5 kD)-G-CSF, PEG(20 kD)-G-CSF and rhG-CSF to trypsin proteolysis. Values are means ± SEM from three independent experiments.

Figure 5. The activity of mono-PEG-G-CSF to increase leukocyte numbers in the peripheral blood of Kunming mice is significantly higher than that of unmodified rhG-CSF. 15 mice were randomly separated into three groups, each with 5 mice; each mice was injected with 5 μg rhG-CSF, PEG(5kD)-G-CSF or PEG(20kD)-G-CSF, respectively; the numbers of leukocytes in the blood obtained from the caudal vein were counted at 0 h, 8 h, 24 h, 48 h and 72 h, respectively. Values are means ± SEM from three independent experiments.


References

[1] Nicola NA, Metcalf D, Johnson GR, Burgess AW. Separation of functionally distinct human granulocyte-macrophage colony-stimulating factors. Blood 1979;54:614–27.

[2] Panopoulos AD, Watowich SS, Granulocyte colony-stimulating factor: Molecular mechanisms of action during steady state and ‘emergency’ hematopoiesis, Cytokine 2008; doi:10.1016/j.cyto.2008.03.002

[3] Duhrsen U, Villeval JL, Boyd J, Kannourakis G, Morstyn G, Metcalf D. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 1988;72:2074–81.

[4] Molineux G, Pojda Z, Hampson IN, Lord BI, Dexter TM. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 1990;76:2153–8.

[5] Bronchud MH, Scarffe JH, Thatcher N, Crowther D, Souza LM, Alton NK, et al. Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br J Cancer 1987;56:809–13.

[6] Morstyn G, Campbell L, Souza LM, Alton NK, Keech J, Green M, et al. Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet 1988;1:667–72.

[7] Welte K, Zeidler C, Reiter A, Muller W, Odenwald E, Souza L, et al. Differential effects of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in children with severe congenital neutropenia. Blood 1990;75:1056–63.

[8] Bonilla MA, Gillio AP, Ruggeiro M, Kernan NA, Brochstein JA, Abboud M, et al. Effects of recombinant human granulocyte colony-stimulating factor on neutropenia in patients with congenital agranulocytosis. N Engl J Med 1989;320:1574–80.

[9] Gough A, Clapperton M, Rolando N, Foster AV, Philpott-Howard J, Edmonds ME. Randomised placebo-controlled trial of granulocyte-colony stimulating factor in diabetic foot infection. Lancet 1997;350:855–9.

[10] Roberts, M. J., Bentley, M. D., and Harris. J. M. Chemistry for peptide and protein PEGylation. AdV. Drug DeliVery ReV. 2002; 54, 459-476.

[11] Yamaoka, T., Tabata, Y. & Ikada,Y. Distribution and tissue uptake of polyethylene glycol with different molecular weights after intravenous administration to mice. J. Pharm. Sci. 1994; 83, 601–606.

[12] Richter, A. W. & Akerblom, E. Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethyleneglycol modified proteins. Int. Arch. Allergy Appl. Immunol. 1983; 70, 124–131.

[13] Harris, J. M., and Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discovery 2003; 2, 214-221.

[14] Harris, J. M., and Zilpsky, S. Poly(ethylene glycol): Chemistry and Biological Applications. ACS Symposium Series 680, American Chemical Society, Washington, DC. 1997.

[15] Kinstler, O. B., Brems, D. N., Lauren, S. L., Paige, A. G., Hamburger, J. B., and Treuheit, M. J. Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm. Res. 1996; 13, 996-1002.

[16] Lee, H., Jang, I. H., Ryu, S. H., and Park, T. G. N-terminal site-specific mono-PEGylation of epidermal growth factor. Pharm. Res. 2003; 20, 818-825.

[17] Nie, Y., Zhang, X., Wang, X., and Chen, J. Preparation and stability of N-terminal mono-PEGylated recombinant human endostatin. Bioconjugate Chem. 2006; 17: 995-999

[18] Matsuda S, Shirafuji N, Asano S. Human granulocyte colony-stimulating factor specifically binds to murine myeloblastic NFS-60 cells and activates their guanosine triphosphate binding proteins/adenylate cyclase system. Blood 1989; 74: 2343-8

[19] Bowen S, Tare N, Inoue T, et al. Relationship between molecular mass and duration of activity of polyethylene glycol conjugated granulocyte colony stimulating factor mutein. Exp Hematol 1999; 27: 425-32

[20] Wong, S. S. Chemistry of protein conjugation and crosslinking. CRC Press, Boca Raton, FL. 1991.

[21] Goodson RJ, Katre NV, Site-directed pegylation of recombinant interleukin-2 at its glycosylation site. Biotechnology 8 (1990): 343–346

[22] Kurfürst M.M. Detection and molecular weight determination of polyethylene glycol-modified hirudin by staining after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analytical Biochem. 1992; 200: 244-248

[23] Wu X, Liu X, Xiao Y, Huang Z, Xiao J, Lin S, Cai L, Feng W, Li X. Purification and modification by polyethylene glycol of a new human basic fibroblast growth factor mutant- hbFGFSer25,87,92. Journal of Chromatography A, 2007; 1161: 51–55

[24] Qin H, Xiu Z, Zhang D, Bao Y, Li X and Han G. PEGylation of Hirudin and Analysis of Its Antithrombin Activity in vitro. Chin. J. Chem. Eng ,2007; 15 (4): 586-590

参加大学生创新训练计划的心得体会

200612月是个记忆犹新的月份,因为大学生创新训练计划开始实施,我们本科学生将有机会更早地走进科研;这的确是个激动人心的消息。我们团队四人不约而同地走到了一起。创新训练计划给了我们锻炼和提高创新能力、实践能力的机会。

因为专业基础,我们团队成员在生物化学方面有着深入的了解,并对生物技术制药方向的研究有着浓厚的兴趣。在聂永军老师的引导下,我们认识了多肽与蛋白质药物研究专家——陈钧辉教授;最终,教授成了我们的导师!

生物化学是一门基础学科,而我们着眼于运用基础知识来解决实际问题。我们选择了重组人粒细胞集落刺激因子(rhG-CSF),它是现今抗肿瘤化疗、放疗以及骨髓移植手术之后最重要的辅助药物之一。但是,rhG-CSF的临床应用存在体内半衰期短、需要多次注射的问题;这给患者带来了很大的不便,而且重复注射也会引起不良反应。使用聚乙二醇(PEG)对蛋白药物G-CSF进行修饰,可以使G-CSF的性质得到改善,以提高它的临床应用价值。

至此,我们项目的总任务,就是通过对现有重组人粒细胞集落刺激因子——rhG-CSF的修饰方法及PEG的应用进行概括与总结;根据已有文献提出我们自己的修饰策略,选用合适的PEGG-CSF进行定点单修饰,分离、纯化得到单修饰的纯品,提高G-CSF的体内外活性,减少其免疫原性,延长其体内半衰期,从而克服它在临床应用中的不足。

创新训练计划项目的重点在于训练,我们项目的进展过程和多数项目一样,缓慢而艰难。然而,我们坚持不懈,了解并体验了科学研究的整个过程,我们受到了严格的科研训练。我们训练了实验技能、实验习惯、实验设计、实验总结、实验创新等等。我们项目的创新点,在于我们选择了合适的修饰工具——单甲氧PEG丙醛,在于我们的实验设计灵活运用了统计学方法,在于我们建立了微量反应体系!

经历了国家大学生创新训练计划,我们学会了查阅科学文献,尤其是外文文献。在查阅文献的过程中,我们体会到阅读方法的重要性;高效的阅读使我们的工作事半功倍。

创新训练计划提高了我们的实验设计能力。这是一个突破,因为本科实验教学中所有实验都是照书本按部就班去做的。但在这次训练中,我们亲自参与了实验设计,并尝试运用了新的试验设计思路——统计学方法,我们取得了可喜的成功。

当然,锻炼得最多的还要属动手能力。熟练地使用各种实验仪器,准确而到位的技术操作,都对我们的动手能力提出了更高的要求。

通过创新训练,我们深化了专业知识。“纸上得来终觉浅,绝知此事要躬行”。生物是一门实验学科。理论是基于实验的,通过实验我们才能对所学的知识进行重现和加深理解,并探索新的知识。

创新训练计划培养了我们严谨、创新、实事求是的作风,这就是科学精神。它们体现在整个科研过程的方方面面。

创新训练计划,增强了我们的团队合作意识。无论是在实验过程中,还是在项目申请和文献查阅上,团队合作精神都得到了很好的锻炼;更是在这样的合作过程中,我们又一次深深体会到“众人拾柴火焰高”的道理。

创新计划,让我们更加清晰地认识了,自己专业的研究热点和发展方向。我们深入了解了生物化学、细胞与分子生物学的研究内容、研究方法、研究意义和专业的未来发展。这种认识,对我们未来的选择,对我们人生的计划,都大有裨益。

我们相信,所有参与过、参与着或者即将参与大学生创新训练计划的同学,都会从训练过程中学到很多,成长很多!

智尚简介  |  诚聘英才  |  联系我们  |  友情链接
版权所有:@2007-2009 智尚 电话:0760-86388801 客服QQ:875870576
地址:广东中山市学院路1号 邮编:528402 皖ICP备12010335号-8
  • 《飘》与《倾城之恋》中女性形象比较
  • 中国大学法语专业毕业论文写作研究
  • 韩语专业毕业论文写作探索
  • 高职日语专业毕业论文测评体系思考
  • 日语专业毕业论文选题问题
  • 日语专业本科毕业论文现状调查与分析
  • 境外将美元汇入中国方法渠道方式
  • 财产、厂房和设备按照IAS16审计
  • IFRS:國際財務報告準則
  • IFRS:國際財務報告準則
  • 德国酒店中德两国文化的交融和冲突
  • 工业翻译中译英考试题目
  • Introduction to en
  • 从汉法主要颜色词汇的文化内涵看两国文
  • Un problème chez &
  • INTERNATIONAL AND
  • IHRM Individual re
  • НАЦИОНАЛЬНО-КУЛЬТУ
  • ТЕОРЕТИЧЕСКИЕ ОСНО
  • SPE会议论文翻译
  • Project Proposal 地
  • 中国意大利家用电器领域合作的可能性和
  • Career Goal与Career
  • Caractéristiques e
  • L'influence de l'S
  • 英语口语教学改革途径测试与分析
  • 语用学理论与高校英语阅读教学
  • 日本语研究计划书写作申请
  • To Whom it May Con
  • 译文中英对照葡萄酒产品介绍
  • 韩国传统用餐礼节
  • 日本語の暧昧語婉曲暧昧性省略表現以心
  • 研究计划书写作要求
  • Outline Impact of
  • 计算机工程与网络技术国际学术会议EI
  • 微软的人脸3D建模技术 Kinect
  • Qualitative resear
  • 新闻的感想
  • 与老师对话的测验
  • 韩语论文修改意见教授老师
  • 华南师范大学外国语言文化学院英语专业
  • APA论文写作格式
  • the surrounding en
  • Современное состоя
  • CHIN30005 Advanced
  • The APA Harvard Sy
  • Annotated Bibiolgr
  • Acker Merrall & Co
  • 资生堂进入中国市场的经营策略
  • Introduction to Pu
  • 软件测试Introduction t
  • Pro Ajax and java
  • 用户体验The user exper
  • AJAX Design Patter
  • The Rich Client Pl
  • Keyframer Chunks
  • 3D-Studio File For
  • Mathematics for Co
  • The Linux MTD, JFF
  • 中日体态语的表现形式及其差异
  • CB 202 System Anal
  • 论日本恐怖电影与好莱坞恐怖片的异同
  • 俄语论文修改
  • 古典诗歌翻译英语论文资料
  • <한중
  • 公司治理(Corporate Gov
  • 英语习语翻译中的移植与转换
  • 日语(上) 期末复习题
  • ACTIVIDAD CORRESPO
  • 리더&#
  • 购物小票翻译
  • 论文摘要翻译英文
  • Bedeutung der Prod
  • ELABORACIÓN
  • 英语考卷代写代做
  • 日本語の感情形容詞の使用特徴——ドラ
  • 未来創造学部卒業研究要領
  • 光之明(国际)低碳产品交易中心介绍
  • 中国の茶文化と日本茶道との比較—精神
  • 목차
  • Final Project Grad
  • 東京学芸大学>センターなど教員許 夏
  • 東京学芸大学 大学院教育学研究科(修
  • 白澤論
  • ポスト社会主義モンゴルにおけるカザフ
  • 言語と色彩現象—史的テクストをもとに
  • 渡来人伝説の研究
  • 中日企业文化差异的比较
  • Modellierung des B
  • 日本大学奖学金申请
  • 大学日语教师尉老师
  • 석사&#
  • Chemical Shift of
  • 中韩生日习俗文化比较
  • Measure of Attachm
  • 酒店韩国客人满意度影响因素研究
  • 要旨部分の訂正版をお送りします
  • Writing and textua
  • 日本企業文化が中国企業にもたらす啓示
  • 日本情报信息专业考试题
  • 雅丽姿毛绒时装有限公司网站文案(中文
  • 語用論の関連性理論「carston」
  • 組織行動と情報セキュリティ.レポート
  • Bedarf
  • 中日企业文化差异的比较
  • 从语形的角度对比中日“手”语义派生的
  • 中国明朝汉籍东传日本及其对日本文化的
  • 《中日茶道文化比较》
  • 从中日两国电视剧看中日文化之差异
  • FOM Hochschule für
  • Die Rolle der Bank
  • A Penny for Your T
  • 也谈ガ行鼻浊音的语音教学问题
  • On the Difference
  • 衣装は苗族の伝統文化の主な表現形式
  • 日语语言文学硕士论文:日本の义务教育
  • 日本的茶文化
  • Samsung Electronic
  • Synthesis and char
  • The traveling mark
  • The Japanese Democ
  • 四季の歌
  • CapitoloI La situa
  • The Effects of Aff
  • WEB服务安全保障分析
  • 音译汉语和英语的相互渗透引用
  • 中日两国服装贸易日语论文写作要求
  • 日语论文修改意见
  • 英语作文题目
  • 申请留学社会经验心得体会
  • BE951 Coursework O
  • Overview township
  • 日本の長寿社会考察
  • 日语老师教师电话联系方式
  • 「依頼」に対する中上級者の「断り」に
  • 日本語序論
  • component formatti
  • 日文文献资料的查阅方法
  • 日文文献资料的查阅方法
  • 日语文献检索日文文献搜索网站
  • 日本留学硕士及研究生的区别硕士申请条
  • Adult attachment s
  • レベルが向上する中国の日本学研究修士
  • 日本留学硕士(修士)与研究生的区别
  • Nontraditional Man
  • Engine Lathes
  • Automatic Screw M
  • Chain Drives
  • V-belt
  • Bestimmung der rut
  • 中山LED生产厂家企业黄页大全
  • 活用神话的文化背景来看韩国语教育方案
  • MLA論文格式
  • 旅游中介
  • MLA论文格式代写MLA论文
  • 小論文參考資料寫作格式範例(採APA
  • clothing model; fi
  • 共同利用者支援システムへのユーザー登
  • 太陽風を利用した次世代宇宙推進システ
  • RAO-SS:疎行列ソルバにおける実
  • 井伏鱒二の作品における小動物について
  • 從“老祖宗的典籍”到“現代科學的証
  • “A great Pecking D
  • 净月法师简历
  • 科技论文中日对照
  • 翻译的科技论文节选
  •  IPY-4へ向ける準備の進み具合
  • 論文誌のJ-STAGE投稿ʍ
  • Journal of Compute
  • 学会誌 (Journal of Co
  • 学会誌JCCJ特集号への投稿締切日の
  • 「化学レポート:現状と将来」
  • 韩语翻译个人简历
  • 九三会所
  • 事態情報附加連体節の中国語表現につい
  • International Bacc
  • HL introduction do
  • コーパスを利用した日本語の複合動詞の
  • 日语分词技术在日语教材开发中的应用构
  • 北極圏環境研究センター活動報告
  • 语用学在翻译中的运用
  • 日汉交替传译小议——从两篇口译试题谈
  • 総合科学専攻における卒業論文(ミニ卒
  • Heroes in August W
  • 玛雅文明-西班牙语论文
  • 西班牙语论文-西班牙旅游美食建筑
  • 八戸工業大学工学部環境建設工学科卒業
  • 親の連れ子として離島の旧家にやって来
  • 「米ソ協定」下の引揚げにおいて
  • タイトル:少子化対策の国際比較
  • メインタイトル:ここに入力。欧数字は
  • 東洋大学工学部環境建設学科卒業論文要
  • IPCar:自動車プローブ情報システ
  • Abrupt Climate Cha
  • Recognition of Eco
  • Complexities of Ch
  • Statistical Analys
  • Dangerous Level o
  • 中日对照新闻稿
  • 俄汉语外来词使用的主要领域对比分析
  • 两种形式的主谓一致
  • 韩语论文大纲修改
  • 중국&#
  • 俄语外来词的同化问题
  • 北海道方言中自发助动词らさる的用法与
  • 论高职英语教育基础性与实用性的有机结
  • 论高职幼师双语口语技能的培养
  • 论高职幼师英语口语技能的培养
  •     自分・この眼&
  • 成蹊大学大学院 経済経営研究科
  • アクア・マイクロ
  • 公共経営研究科修士論文(政策提言論文
  • 基于学习风格的英语学习多媒体课件包
  • 后殖民时期印度英语诗歌管窥
  • 汉语互动致使句的句法生成
  • 笔译价格
  • 携帯TV電話の活用
  • 英語学習におけるノートテイキング方略
  • 強化学習と決定木によるエージェント
  • エージェントの行動様式の学習法
  • 学習エージェントとは
  • 強化学習と決定木学習による汎用エージ
  • 講演概要の書き方
  • 对学生英语上下义语言知识与写作技能的
  • 英汉词汇文化内涵及其翻译
  • 论大学英语教学改革之建构主义理论指导
  • 国内影片片名翻译研究综观及现状
  • 平成13年度経済情報学科特殊研究
  • Comparison of curr
  • 英文论文任务书
  • This project is to
  • the comparison of
  • デジタルペンとRFIDタグを活用した
  • 無資格者無免許・対策関
  • 創刊の辞―医療社会学の通常科学化をめ
  • gastric cancer:ade
  • 揭示政治语篇蕴涵的意识形态
  • 试论专业英语课程项目化改革的可行性
  • 多媒体环境下的英语教学交际化
  • 翻译认知论
  • 读高桥多佳子的《相似形》
  • 以英若诚对“Death of A S
  • 论沈宝基的翻译理论与实践
  • 论语域与文学作品中人物会话的翻译
  • 浅析翻译活动中的文化失衡
  • 谈《傲慢与偏见》的语言艺术
  • 论语言结构差异对翻译实效性的影响
  • 英语传递小句的认知诠释
  • 英语阅读输入的四大误区
  • 在语言选择中构建社会身份
  • 私たちが見た、障害者雇用の今。
  • 震災復興の経済分析
  • 研究面からみた大学の生産性
  • 喫煙行動の経済分析
  • 起業の経済分析
  • 高圧力の科学と技術の最近の進歩
  • 「観光立国」の実現に向けて
  • 資源としてのマグロと日本の動向
  • 揚湯試験結果の概要温泉水の水質の概要
  • 計量史研究執筆要綱 
  • 日中友好中国大学生日本語科卒業論文
  • 제 7 장
  • 전자&
  • 現代國民論、現代皇室論
  • 記紀批判—官人述作論、天皇宗家論
  • 津田的中國觀與亞洲觀
  • 津田思想的形成
  • 反思台灣與中國的津田左右吉研究
  • 遠隔講義 e-learning
  • 和文タイトルは17ポイント,センタリ
  • Design And Impleme
  • Near-surface mount
  • 중국 &
  • 韩国泡菜文化和中国的咸菜文化
  • 무한&#
  • 수시 2
  • 韩流流向世界
  • 무설&#
  • 要想学好韩语首先得学好汉语
  • 사망&#
  • Expression and Bio
  • Increased Nuclear
  • 论女性主义翻译观
  • 健康食品の有効性
  • 日语的敬语表现与日本人的敬语意识
  • 日语拒否的特点及表达
  • Solve World’s Prob
  • 韩汉反身代词“??”和“自己”的对比
  • 韩汉量词句法语义功能对比
  • 浅析日语中的省略现象
  • 浅谈日语中片假名的应用
  • 土木学会論文集の完全版下印刷用和文原
  • 英语语调重音研究综述
  • 英汉语言结构的差异与翻译
  • 平等化政策の現状と課題
  • 日本陸軍航空史航空特攻
  • 商务日语专业毕业生毕业论文选题范围
  • 家庭内暴力の現象について
  • 敬语使用中的禁忌
  • Treatment of high
  • On product quality
  • Functional safety
  • TIDEBROOK MARITIME
  • 日文键盘的输入方法
  • 高职高专英语课堂中的提问策略
  • 对高校学生英语口语流利性和正确性的思
  • 二语习得中的文化错误分析及对策探讨
  • 高职英语专业阅读课堂教学氛围的优化对
  • 趣谈英语中的比喻
  • 浅析提高日语国际能力考试听力成绩的对
  • 外语语音偏误认知心理分析
  • 读格林童话《小精灵》有感
  • “新世纪”版高中英语新课教学导入方法
  • 初探大学英语口语测试模式与教学的实证
  • 中加大学生拒绝言语行为的实证研究
  • 目的论与翻译失误研究—珠海市旅游景点
  • 对学生英语上下义语言知识与写作技能的
  • 英语水平对非英语专业研究生语言学习策
  • 英语教学中的文化渗透
  • 中学教师自主学习角色的一项实证研究
  • 叶维廉后期比较文学思想和中诗英译的传
  • 钟玲中诗英译的传递研究和传递实践述评
  • 建构主义和高校德育
  • 论习语的词法地位
  • 广告英语中的修辞欣赏
  • 从奢侈品消费看王尔德及其唯美主义
  • 论隐喻的逆向性
  • 企盼和谐的两性关系——以劳伦斯小说《
  • 论高等教育大众化进程中的大学英语教学
  • 试论《三四郎》的三维世界
  • 李渔的小说批评与曲亭马琴的读本作品
  • 浅谈中国英语的表现特征及存在意义
  • 湖南常德农村中学英语教师师资发展状况
  • 海明威的《向瑞士致敬》和菲茨杰拉德
  • 围绕课文综合训练,培养学生的写作能力
  • 指称晦暗性现象透析
  • 西部地区中学生英语阅读习惯调查
  • 论隐喻的逆向性
  • 认知体验与翻译
  • 试析英诗汉译中的创造性
  • 言语交际中模糊语浅议
  • 认知体验与翻译
  • 关于翻译中的词汇空缺现象及翻译对策
  • 从互文性视角解读《红楼梦》两译本宗教
  • 从目的论看中英动物文化词喻体意象的翻
  • 高校英语语法教学的几点思考
  • 高校体艺类学生外语学习兴趣与动机的研
  • 大学英语自主学习存在的问题及“指导性
  • 从接受美学看文学翻译的纯语言观
  • 《红楼梦》两种英译本中服饰内容的翻译
  • 法语对英语的影响
  • 影响中美抱怨实施策略的情景因素分析
  • 代写需求表
  • 跨文化交际中称赞语的特点及语言表达模
  • 实现文化教育主导外语教育之研究
  • 试论读者变量对英语阅读的影响
  • 从文化的角度看英语词汇中的性别歧视现
  • 合作原则在外贸函电翻译中的运用
  • Default 词义探悉
  • 从图示理论看英汉翻译中的误译
  • 许国璋等外语界老前辈所接受的双语教学
  • “provide” 和 “suppl
  • 由英汉句法对比看长句翻译中的词序处理
  • 1000名富翁的13条致富秘诀中英对
  • 英语中18大激励人心的谚语中英对照
  • 反省女性自身 寻求两性和谐---评
  • 浅析翻译中的“信”
  • 集体迫害范式解读《阿里》
  • 横看成岭侧成峰-从美学批评角度解读《
  • 福柯的话语权及规范化理论解读《最蓝的
  • 播客技术在大学英语教学中的应用
  • 如何在山区中等专业学校英语课堂实施分
  • 奈达与格特翻译理论比较研究
  • 语篇内外的衔接与连贯
  • Economic globaliza
  • 用概念整合理论分析翻译中不同思维模式
  • 英语新闻语篇汉译过程中衔接手段的转换
  • 对易卜生戏剧创作转向的阐释
  • 动词GO语义延伸的认知研究
  • 反思型教师—我国外语教师发展的有效途
  • 输入与输出在词汇学习中的动态统一关系
  • 教育实践指导双方身份认同批判性分析
  • 中英商务文本翻译异化和归化的抉择理据
  • 从艺术结构看《呼啸山庄》
  • 从儒家术语“仁”的翻译论意义的播撒
  • 论隐喻与明喻的异同及其在教学中的启示
  • 话语标记语的语用信息在英汉学习型词典
  • 论森欧外的历史小说
  • 翻译认知论 ——翻译行为本质管窥
  • 中美语文教材设计思路的比较
  • 美国写作训练的特点及思考
  • UP语义伸延的认知视角
  • 成功的关键-The Key to S
  • 杨利伟-Yang Liwei
  • 武汉一个美丽的城市
  • 对儿童来说互联网是危险的?
  • 跨文化交际教学策略与法语教学
  • 试论专业英语课程项目化改革的可行性-
  • 论沈宝基的翻译理论与实践
  • 翻译认知论——翻译行为本质管窥
  • 母爱的虚像 ——读高桥多佳子的《相似
  • 浅析英语广告语言的特点
  • 中国の株価動向分析
  • 日语拒否的特点及表达
  • 日语的敬语表现与日本人的敬语意识
  • 浅析日语中的省略现象
  • 浅谈日语中片假名的应用
  • 浅谈日语敬语的运用法
  • 浅谈日语会话能力的提高
  • ^论日语中的年轻人用语
  • 敬语使用中的禁忌
  • 关于日语中的简略化表达
  • 关于日语的委婉表达
  • The Wonderful Stru
  • Of Love(论爱情)
  • SONY Computer/Notb
  • 从加拿大汉语教学现状看海外汉语教学
  • MLA格式简要规范
  • 浅析翻译类学生理解下的招聘广告
  • 日本大学排名
  • 虎头虎脑
  • 杰克逊涉嫌猥亵男童案首次庭审
  • Throughout his car
  • June 19,1997: Vict
  • 今天你睡了“美容觉”吗?
  • [双语]荷兰橙色统治看台 荷兰球员统
  • Father's Day(异趣父亲节
  • 百佳电影台词排行前25名
  • June 9,1983: Thatc
  • June 8, 1968: Robe
  • 60 players mark bi
  • June 6, 1984: Indi
  • 日本の専門家が漁業資源を警告するのは
  • オーストリア巴馬は模範的な公民に日本
  • 日本のメディアは朝鮮があるいは核実験
  • 世界のバレーボールの日本の32年の始
  • 日本の国債は滑り降りて、取引員と短い
  • 广州紧急“清剿”果子狸
  • 美国“勇气”号登陆火星
  • 第30届冰灯节哈尔滨开幕
  • 美国士兵成为时代周刊2003年度人物
  • BIRD flu fears hav
  • 中国チベット文化週間はマドリードで開
  • 中国チベット文化週間はマドリードで開
  • 中国の重陽の文化の発祥地──河南省西
  • シティバンク:日本の国債は中国の中央
  • イギリスは間もなく中国にブタ肉を輸出
  • 古いものと新しい中国センター姚明の失
  • 中国の陝西は旅行して推薦ӥ
  • 中国の電子は再度元手を割って中国の有